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1 Introduction

String gas cosmology. String gas cosmology is a cosmological scenario motivated by

string theory [1–3] (see [4, 5] for reviews and [6] for another perspective). In the original

formulation of string gas cosmology, all spatial dimensions are treated on an equal footing:

they are all toroidal and start out at the string size. The aim is that dynamical processes

in the early universe will allow only three dimensions to expand to macroscopic size, while

the extra dimensions are stabilised at the string size by a gas of strings. Assuming that

the dilaton is stabilised by some other mechanism, the string gas can stabilise the extra

dimensions during the radiation-dominated era [7, 8] (see also [1, 9–16]). However, when

the universe becomes matter-dominated, the matter will push the extra dimensions to open

up [1, 7, 8, 17]. It was shown in [18] that the gas of strings can still prevent the extra

dimensions from growing too large, but they cannot be completely stabilised. There is a

competition between the push of matter and the pull of strings. If the number density of

the strings is too small, the extra dimensions will grow to macroscopic size. If the strings

win, the size of the extra dimensions will undergo damped oscillations around the self-dual

radius. The oscillations between expansion and contraction of the extra dimensions induce

oscillations in the expansion rate of the large dimensions, which can involve alternating

periods of acceleration and deceleration [18]. (This kind of a mechanism has also been

studied in [19].)

Since the oscillations can start only after the universe becomes matter-dominated, they

provide an in-built mechanism for late-time acceleration in string gas cosmology, one that

alleviates the coincidence problem in a manner similar to scaling and tracker fields [20, 21].

The mechanism is based on ingredients already present in string gas cosmology and does

not require adding new degrees of freedom or turning on new interactions. However, the

oscillating expansion history is quite different from the ΛCDM model which is known to be

a good fit to the observations. (For comparison of some oscillating models to observations,

see [22, 23].)

We compare the model studied in [18] to observations of type Ia supernovae (SNe

Ia), using the Big Bang Nucleosynthesis (BBN) constraint on new radiation degrees of
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freedom. In section 2 we describe the string gas model, and in section 3 we fit the model to

the Union and ESSENCE sets of SNIa data. The distances predicted by the model provide

an acceptable fit to the Union data, but the fit to the ESSENCE data is poor. In section

4 we summarise our results and discuss how to make the model more realistic.

2 The string gas model

The metric and the equation of motion. We consider the string gas model discussed

in [18]. The spacetime is ten-dimensional, with the metric

ds2 = −dt2 + a(t)2
3

∑

i=1

dxidxi + b(t)2
6

∑

j=1

dxjdxj , (2.1)

where i = 1 . . . 3 labels the visible dimensions and j = 1 . . . 6 labels the extra dimensions.

All spatial dimensions are taken to be toroidal. We take the value b = 1 to correspond to

extra dimensions at the self-dual radius given by the string length ls ≡
√

α′.

We assume that the dilaton has been stabilised [10–14] in a way that leaves the equation

of motion of the metric unconstrained, so that it reduces to the Einstein equation

Gµν = κ2Tµν , (2.2)

where Gµν is the Einstein tensor, κ2 is the 10-dimensional gravitational coupling and Tµν

is the energy-momentum tensor. (We take the cosmological constant to be zero.)

Given the symmetries of the metric (2.1), the energy-momentum tensor has the form

T µ
ν = diag(−ρ(t), p(t), p(t), p(t), P (t), P (t), P (t), P (t), P (t), P (t)) , (2.3)

where p and P are the pressure in the visible dimensions and the extra dimensions, respec-

tively. With (2.1) and (2.3), the Einstein equation (2.2) reads

κ2ρ = 3H2
a + 18HaHb + 15H2

b (2.4)

Ḣa + H2
a = −

1

6
κ2(ρ + 3p) −

3

8
κ2(ρ − 3p + 2P ) + 6HaHb + 10H2

b (2.5)

κ2(ρ − 3p + 2P ) = 8Ḣb + 24HaHb + 48H2
b , (2.6)

where Ha ≡ ȧ/a is the expansion rate of the visible dimensions and Hb ≡ ḃ/b is the

expansion rate of the extra dimensions.

The distance. In Friedmann-Robertson-Walker models, the luminosity distance DL is

determined by the Hubble rate as a function of redshift and the spatial curvature at

one time,

DL = (1 + z)
1

ΩK0Ha0

sinh

(

ΩK0Ha0

∫ z

0

dz′

Ha(z′)

)

, (2.7)

where ΩK is the spatial curvature density parameter and the subscript 0 refers to the

present day (see e.g. [24, 25]).
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The metric (2.1) is not homogeneous and isotropic, so the relation (2.7) does not hold.

The distance should instead be calculated from the general equation (the null geodesic

shear has been neglected)

∂2
λDA = −

1

2
GµνkµkνDA , (2.8)

where DA = (1 + z)−2DL is the angular diameter distance, ∂λ is the derivative along the

null geodesic and kµ is the photon momentum (see e.g. [25]). We only consider light rays

which propagate in the visible directions, and (2.8) reduces to

Ha∂z

[

(1 + z)2 Ha∂zDA

]

=
(

Ḣa + 3Ḣb − 3HaHb + 3H2
b

)

DA . (2.9)

Only if Hb = 0 can we integrate (2.9) to recover (the spatially flat case of) (2.7). The

relation (2.7) was formulated as a consistency check for the FRW metric in [24]. String

gas cosmology provides a concrete example of a model where the metric does not have the

FRW form and the consistency condition is violated. In general, this is also the case in

other models with dynamical extra dimensions. However, in models where the observers are

confined to a brane, distances along the visible directions are calculated with the induced

metric on the brane, and the evolution of the extra dimensions does not directly enter the

light propagation equation (2.8).

The matter content. In addition to ordinary four-dimensional radiation (γ) and pres-

sureless matter (m), we have a gas of massless strings (s) with winding and momentum

modes in the extra dimensions and momentum modes in the visible dimensions. The

contribution of radiation and matter to the energy-momentum tensor (2.3) is

ργ = ργ,ina−4b−6 , pγ =
1

3
ργ , Pγ = 0 (2.10)

ρm = ρm,ina−3b−6 , pm = 0 , Pm = 0 , (2.11)

and for the string gas we have [18]

ρs = M−1ρs,ina−3b−6
√

M2a−2 + b−2 + b2 − 2 (2.12)

ps =
1

3

M2a−2

M2a−2 + b−2 + b2 − 2
ρs (2.13)

Ps =
1

6

b−2 − b2

M2a−2 + b−2 + b2 − 2
ρs , (2.14)

where the subscript in refers to the initial values, and M is the initial momentum of a

string in the visible directions in units of the string scale l−1
s . Note that all strings are

assumed to have the same momentum.

There are four parameters in the energy-momentum tensor: the scale M and the energy

densities ργ,in, ρm,in and ρs,in. However, the parameter M only determines the absolute

scale, and does not affect the dynamics, as we see by rescaling a → Ma. The evolution of
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the system therefore depends on only two dimensionless combinations of the parameters,

which we take to be the following:

r ≡ M−1
ργ,in

ρm,in

fs ≡
ρs,in

ργ,in
. (2.15)

Now, with the rescaled a, the total energy density reads

ρ = ρm,inM−3a−3b−6

(

1 + ra−1 + rfs

√

a−2 + b−2 + b2 − 2
)

, (2.16)

and the pressures are written accordingly.

Deep in the radiation-dominated era (in particular, during BBN), the energy density of

the string gas evolves like radiation, and contributes to the total energy density a fraction

Ωs,in = fs/(1 + fs), given that the contribution of matter is negligible and b = 1 in

the radiation-dominated era. The string fraction fs is related to the effective number of

additional neutrino species ∆Nν by fs = 7∆Nν/43 [26]. From BBN we have, assuming

negligible neutrino chemical potential, the constraint ∆Nν ≤ 1.5, giving fs ≤ 0.24, or

Ωs,in ≤ 0.20 [27]. Allowing for a large electron neutrino chemical potential, we have

∆Nν ≤ 4.1, which translates into fs ≤ 0.7, or Ωs,in ≤ 0.4 [28]. The bound depends on the

assumption that the gravitational coupling during BBN is the same as today, which is not

necessarily true in the string gas model, since GN ∝ b−6. If b < 1 today, the gravitational

coupling at BBN is reduced relative to the present value, so there is more room for new

degrees of freedom. However, generally b dips below unity only very slightly, and typically

b > 1 today, so taking this into account would make the constraints tighter. It was observed

in [18] that a requirement for the string gas being able to keep the extra dimensions small

is rfs > 3/2. There are no other constraints on r, since it depends on M , the initial

momentum of the strings in the visible directions, on which there is no limit.

The string gas behaves like a scaling solution [20] in the radiation-dominated era and

like a tracker solution [21] in the matter-dominated era [18]. The value b = 1 is an attractor

point: as long as the initial value of b is not too large (b <
√

2 is a necessary condition), b will

rapidly evolve to unity, and the extra dimensions are stable. Then the energy density of the

string gas behaves exactly like radiation. When the universe becomes matter-dominated,

the string gas starts tracking the matter as the extra dimensions expand. When the extra

dimensions are pulled back and contracted by the strings, the visible dimensions start

oscillating between deceleration and acceleration. (If the string gas is too weak to prevent

the extra dimensions from opening up, they will grow without bound, and there will be no

acceleration in the visible dimensions. We are not interested in this possibility.)

3 Comparison with observations

The observations. We want to see how well the expansion history of the system of

equations (2.4)–(2.6) with the energy density (2.16), and the distance given by (2.9), agrees

with cosmological observations. The interpretation of many observations such as the cosmic
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microwave background (CMB) and the baryon acoustic oscillations requires perturbation

theory. The effect of the string gas and the extra dimensions on the perturbation equations

has not been completely worked out [29–31], so we will consider only observations which

are independent of perturbations. Two important sets of observations which depend only

on the background are luminosity distances of SNe Ia and the primordial abundance of

light elements. The ages of passively evolving galaxies also provide a measurement of

the Hubble parameter as a function of redshift independent of the distance scale [32]. In

addition, there are local measurements of the Hubble parameter, the age of the universe

and the matter density.

We will use the ESSENCE SNIa dataset [33] and the Union compilation [34] sepa-

rately. The Union dataset is the newest and most comprehensive collection, but it has

been analysed with the assumption that the ΛCDM model is correct. Therefore the results

cannot, strictly speaking, be used to compare between cosmological models in an unbiased

manner, especially in the case of models which are significantly different from ΛCDM, like

the string gas model. Therefore, we also fit to the ESSENCE dataset, which has been

analysed differently, for comparison. We find that, despite the bias in the Union analysis,

the string gas model fits the Union dataset better than the ESSENCE data. This could be

due to more conservative treatment of errors in the Union analysis.

We will also take into account the BBN constraint on new radiation degrees of freedom

from the observed abundance of light elements [28]. We will not use the data on the

ages of passively evolving galaxies, due to possible systematic effects related to stellar

evolution. In addition to above data, a number of other general dark energy probes have

also been suggested. In particular, the baryon acoustic oscillations [35] and the CMB shift

parameter [36] have been considered as standard rulers. However, both of these probes

suffer from model dependence and caution should be exercised when applying them to

models other than ΛCDM [37, 38].

The supernova datafit. We use a grid method to scan the model parameter space

(r, fs), because the complicated confidence contour structure makes Monte Carlo Markov

Chain methods ineffective. We refined the grid until, for a typical size of 400 × 400, the

fit no longer improved significantly. In order to determine the best fit values, we further

zoomed into regions with high values of χ2. When we do not apply the BBN constraint

fs < 0.7, we restrict the scan to fs < 9, corresponding to Ωs,in < 0.9.

In figure 1 we plot the goodness-of-fit in the (r, fs)-plane for the Union dataset (the

behaviour is similar for the ESSENCE data). The inset shows the region around the best-fit

model, marked with a circle. The χ2 contours have a striking structure. The lines of equal

χ2 are disjoint, and nearby points can have radically different values of goodness-of-fit.

This is not an artifact of the analysis. (A complicated confidence level contour structure

for an oscillating model was also found in [23].) In order to have enough acceleration in the

visible dimensions at sufficiently late times, the present day has to be in a specific location,

just after the rise of one of the first few oscillations. The details of the oscillations, in

turn, depend on r and fs in a complex manner. (Note that the late-time evolution depends

on the parameter r only via the initial conditions, as the radiation term in the energy

– 5 –



J
H
E
P
0
4
(
2
0
0
9
)
0
0
6

Figure 1. Confidence level contours in the (r, fs)-plane for the Union dataset. The best-fit model

is marked with a circle.

Model Dataset χ2
bf p(%) r fs Remarks

ΛCDM Union 308.3 44 - - ΩΛ = 0.68

ΛCDM Essence 196.0 37 - - ΩΛ = 0.75

String gas Union 329.8 15 3.636 0.696 fs ≤ 0.7

String gas Union 317.6 28 0.893 3.246 fs ≤ 9

String gas Essence 262.2 0.03 3.636 0.696 fs ≤ 0.7

String gas Essence 234.5 1 0.833 3.497 fs ≤ 9

Table 1. Goodness-of-fit and best-fit parameters for ΛCDM and the string gas model for different

datasets, with and without the BBN constraint.

density (2.16) is negligible at late times.) Also, in order to have strong acceleration, the

extra dimensions have to expand almost to the point of not turning back, and then contract

rapidly. If the extra dimensions were to expand slightly more, they would not turn around,

and there would be no acceleration. Therefore, the best fits are obtained on the border of

very poor fits, as seen in figure 1.

In table 1 we give the parameter values as well as the χ2 (and the corresponding

probability p of obtaining the data given the model) for the best-fit string gas model with

and without the BBN constraint for both datasets; values for the best-fit ΛCDM model

– 6 –
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Figure 2. Magnitude as a function of redshift compared to an empty universe for the Union data,

for the string gas model with the BBN constraint and the ΛCDM model.

are shown for comparison. Because of the complex dependence of the goodness-of-fit on

r and fs, we cannot definitely rule out the possibility that there would be a better fitting

model somewhere in the regions that we did not completely study. In the patches that we

did cover in detail, the quality of fit is already saturated at the scale visible in figure 1 and

does not improve when zooming to smaller regions.

For the Union dataset, the χ2 for the best-fit string gas model without the BBN

constraint is 9.3 points worse than for the ΛCDM model, and 21.5 points worse when the

BBN constraint is taken into account. For the ESSENCE data, we have ∆χ2 = 40.2 and

66.2, respectively. In figure 2 we show the distance-redshift relation for the best-fit model

to the Union dataset with and without the BBN constraint. The string gas behaviour is

clearly different from the ΛCDM model, and provides a worse fit to the data, though for

the Union data, the quality of the fit is still good. The string gas model would be further

disfavoured if we took into account that it has one extra parameter compared to ΛCDM.

In figure 3, we plot some quantities for the best-fit model to the Union dataset (with

the BBN constraint included). In figure 3 a), we show the density parameters of radiation,

matter and the string gas. The energy density of the string gas is completely subdomi-

nant at late times, Ωs0 = 0.02. However, the string gas can still have a large impact on

the dynamics, because its energy-momentum tensor (2.12)–(2.14) violates the null energy

condition. When the expansion is faster than in the Einstein-de Sitter case, the matter

density parameter Ωm ≡ κ2ρm/(3H2
a) is smaller than unity, and in principle it could be in

– 7 –
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Figure 3. a) Density parameters Ωi ≡ κ2ρi/(3H2

a
), b) size of the extra dimensions and Newton’s

constant, c) expansion rate of the large dimensions (H4D is the Hubble parameter in the usual

four-dimensional case) and d) expansion rate of the extra dimensions, for the best-fit model to the

Union data, with the BBN constraint.

the observationally allowed range Ωm0 ≈ 0.2-0.3 today. However, for the best-fit model we

have Ωm0 = 0.73, far too large.

In figure 3 b) we show the scale factor of the extra dimensions b and the four-

dimensional gravitational coupling GN ∝ b−6. The difference between b at BBN and today

is small, and well within the observational limits discussed in [18]. However, b deviates

noticeably from unity at last scattering at z = 1100: bLS = 1.14, GN,LS/GN,in = 0.45.

This is a generic feature of the string gas model, because last scattering is soon after the

matter-radiation equality, when the extra dimensions start opening up. This prediction

could provide a stringent constraint. However, quoted limits on the variation of GN (or on

new radiation degrees of freedom) from the CMB and other non-BBN probes are model-

dependent [38, 39], and rely on perturbation theory. (Note that the string gas does not

behave like radiation at last scattering.)

In figure 3 c) we show the expansion rate of the visible dimensions Ha relative to what it

would be without the extra dimensions and the string gas, denoted by H4D. (In the matter-

dominated era, H4D = 2/(3t).) Comparing to the plot of Hb/Ha in figure 3 d), we see how

acceleration in the visible dimensions correlates with contraction of the extra dimensions.

The Hubble parameter today in the model is somewhat low, which is related to the large

value of Ωm0. At late times 3H2
4D

= κ2ρm,ina−3, so we have Ωm = (Ha/H4D)−2b−6. In

– 8 –
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order to get enough acceleration in the recent past, it seems that the extra dimensions must

have recently collapsed, so b ≈ 1 today. The value Ωm = 0.3, for example, then requires

Ha/H4D = 1.8. The maximum value of Ha/H4D in the best-fit model is only 1.3, and the

value today is 1.2. Without the BBN constraint, the situation would be better, with higher

values of Ha/H4D.

The quantity Ha/H4D also gives the relation between the age of the universe and the

present value of the Hubble parameter, since Ha/H4D = 3Hat/2 at late times. A model-

independent observational constraint on the age of the universe is given by the ages of

globular clusters [40], which lead to the lower limit t0 ≥ 11.2 Gyr at 95% C.L. and a best-

fit age of t0 = 13.4 Gyr. The best model-independent measure of the current value of the

Hubble parameter comes from the Hubble Key Project [41]. The result is sensitive to the

treatment of Cepheids, and two different analyses yield Ha0 = 0.73 ± 0.06 km/s/Mpc and

Ha0 = 0.62 ± 0.05 km/s/Mpc (1σ limits). Taking the best-fit value for t0 and the mean

values for Ha0 gives Ha/H4D = 1.5 and Ha/H4D = 1.27, respectively. The value in the

best-fit model is too low, but not drastically so, taking into account the uncertainties in t0
and Ha0.

The effective equation of state. One reason for the poor fit is the extra-dimensional

modification of the relationship between the expansion rate and the distance in (2.9). Rapid

oscillations of the Hubble parameter do not by themselves rule out the expansion history.

If we take the expansion rate Ha for the string gas model and calculate the distance using

the FRW relation (2.7), the χ2 of the best fit without the BBN constraint improves by 4.2

points for the Union data and 30.7 points for the ESSENCE data, and the fits correspond

to a probability of 29% and 20%, respectively.

The string gas cosmology context aside, this provides an interesting demonstration

of how a model with an expansion history radically different from ΛCDM is consistent

with the SNIa data. In figure 4 a), we plot the effective equation of state ωx of the

best-fit model, defined by treating the string gas and the extra-dimensional geometrical

contributions to the Friedmann equation as one effective component, so that (2.4) reads

3H2
a = 8πGN (ργ,ina−4 + ρm,ina−3 + ρx), with px defined correspondingly for (2.5), and

wx ≡ px/ρx. The variation in the effective equation of state wx is extreme: in fact, the

equation of state diverges, because ρx passes through zero (in the plot, we cut wx off at ±2).

The equation of state is far from constant, and far from slowly varying, unlike assumed in

most parametrisations. (For the importance of the assumed parametrisation of the equation

of state for analysing the data, see [42].) Because wx diverges, the evolution of the effective

energy density is better displayed via the effective density parameter Ωx ≡ κ2ρx/(3H2
a)

shown in figure 4 b). The effective energy density is negative for a significant part of the

evolution, as could be expected on the basis of the strong deceleration seen in figure 3 c).

4 Discussion

Conclusions. We have studied the late-time acceleration due to the oscillations of extra

dimensions in string gas cosmology in the simple model discussed in [18]. We have fitted

– 9 –
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Figure 4. a) Effective equation of state and b) effective density parameter, for the best-fit model

to the Union data, with the BBN constraint.

the expansion history to the Union and ESSENCE sets of type Ia supernovae. The string

gas model does not fit the SNIa data as well as the ΛCDM model. With the Union SNIa

data, the difference in the goodness-of-fit is small, but the fit to the ESSENCE data is

poor. Also, the best-fitting string gas models have a significant fraction of the energy

density during BBN in the string gas, and taking into account the BBN constraint on new

radiation degrees of freedom makes the fit worse. Further, we have considered a rather

conservative BBN limit, allowing for neutrino chemical potential. Since the best-fit model

is at the boundary of the region allowed by BBN, we would expect the fit to become worse

as the BBN limit becomes more stringent. In the model, the matter density is also too high

and the Hubble parameter today somewhat low, so taking further observational constraints

into account would be likely to degrade the fit further. In any case, the model can still

provide a stabilisation mechanism for the extra dimensions during the matter dominated

era, for which it was originally introduced.

Leaving aside the physical origin of the oscillations and the constraint from BBN, the

model demonstrates how an expansion history which is very different from the ΛCDM

model, with strong oscillations of the Hubble parameter, can still provide a good fit to the

supernova data. (In this context, it may be interesting that the Hubble parameter inferred

from observations of the ages of passively evolving galaxies shows oscillations [32], though

it is premature to draw strong conclusions from the data.) The fit only becomes poor when

the change in the expansion rate-distance relationship due to the extra dimensions is taken

into account. This in turn is a concrete example of a model where this FRW consistency

condition, discussed in [24], is strongly violated.

Improving the model. As discussed in [18], the energy-momentum tensor for the string

gas is expected to be more complex than (2.12)–(2.14). The energy density (2.12) corre-

sponds to a gas of strings which all have the same momentum Mls/a in the visible dimen-

sions, while a realistic gas would have a distribution of strings with different momenta.

The evolution of terms with different values of M is qualitatively the same: they scale

like radiation in the radiation-dominated era and start tracking the matter during the

– 10 –
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matter-dominated era until the onset of oscillations. However, the different terms will lead

to quantitatively slightly different oscillations, and as we have seen, the evolution is very

sensitive to the parameters of the string gas. In order to explore this possibility, we would

have to know the distribution of string momenta, which depends on how the string gas was

created in the early universe and whether it has thermalised.
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